ࡱ> hg  \p_o(u7b Ba==KS+8X@"1[SO1[SO1[SO1[SO1[SO1[SO1[SO1[SO1h[SO+""#,##0;\-""#,##05""#,##0;[Red]\-""#,##07""#,##0.00;\-""#,##0.00A""#,##0.00;[Red]\-""#,##0.00e*0_-""* #,##0_-;\-""* #,##0_-;_-""* "-"_-;_-@_-,)'_-* #,##0_-;\-* #,##0_-;_-* "-"_-;_-@_-u,8_-""* #,##0.00_-;\-""* #,##0.00_-;_-""* "-"??_-;_-@_-4+/_-* #,##0.00_-;\-* #,##0.00_-;_-* "-"??_-;_-@_-\$#,##0_);\(\$#,##0\)\$#,##0_);[Red]\(\$#,##0\) \$#,##0.00_);\(\$#,##0.00\)% \$#,##0.00_);[Red]\(\$#,##0.00\)"Yes";"Yes";"No""True";"True";"False""On";"On";"Off"],[$ -2]\ #,##0.00_);[Red]\([$ -2]\ #,##0.00\)                  , * + ) x x 0  8 `LSheet1CSheet2JSheet3VV" *9^Sv;N\O;N\Oc T\OpehQ\OY Tg R Ty Rir{|+RShewSSgSuxxvzuY T N~QpeevN*Nckĉ[RĞe2Ng,Ğepef[Bg_VQ8h_g R20140515343539-545aRobust CVaR-based portfolio optimization under a general affine data perturbation uncertainty set4b_ 14b_ eQNS@Journal of Computational Analysis and Application {RgN^(uBg_ V VEf[/g Rir201401011693-103JAn Inexact PRP Conjugate Gradient Method for Symmetric Nonlinear EquationshTOQhTOQ lQh<Numerical Functional Analysis and Optimizationpefe-Mechanics Reseach Communications Rf[xvz, V 201403015626-306bNonlinear stability of one-leg methods for neutral Volterra delay- integro- differential equationssZfu8Mathematics and Computers in Simulation|~!jb-Nvpef[N{:g wpQ 97147-161qOn the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearitiesĞRĞR hg_%f flq\ x^y-Journal of Differential Equations _Re zBg_ V 201404012567 2101-211414JGraphs associated with matrices over finite fields and their endomorphismsĞyOyf[-NvyceRRf[Bg_ V 2014051330TConstruction of Runge-Kutta type methods for solving ordinary differential equationsUeuUeu Y[ŖZ0Applied Mathematics and Computation ^(upef[N{ V 234179-191aExistence and uniqueness of mild solutions for a class of nonlinear fractional evolution equationss ss^+Advance in difference equations _Re zۏU\ V 20140520150PSharp estimates and weighted boundedness for some multilinear integral operators'Y^AAnalele Universitatii Din Oradea-fascicola Matematica pef[t^ R Wl<\N 2014060121109-122XOn the convergence properties of the unmodified PRP method with a nondescent line searchhTOQ NgN-Optimization Methods and SoftwareOSelNoN V 484-49631uAsymptotic stability of solution to nonlinear neutral and Volterra functional differential equations in Banach spaces sZfu 4t _Z Ng[[O20140615237217-226xChaotic Oscillations of Solutions of the Klein Gordon Equation Due to Imbalance of Distributed and Boundary Energy FlowsY[l H] Y[l Ğ:ce=International Journal of Bifurcation and Chaos R\NmlVEBg_ V 20140701241-193Dynamics of third-order nonlinear neutral equationssfh sfh RR -sey:Discrete Dynamics in Nature and Society 6qN>yO-NvyceRR|~ V 20140714oWeighted boundedness of multilinear operators associated to singular integral operators with non-smooth kernels8Journal of Inequalities and Applications  NI{_SvQ^(uBg_ eRaW 201407242761-18(Diffusion occupation time before exitingNg^BlNg^Bl sς,hTSfe,1gZ-Frontiers of Mathematics in China -NVpef[MRl,-NV 201408019843-861yExtension of Modified Polak-Ribiere-Polyak Conjugate Gradient Method to Linear Equality Constraints Minimization Problems*Abstract and Applied Analysis XdS^(uRg V 201408061-9BSharp estimates and boundedness for multilinear integral operators fW ĞR R\U0Journal of Analysis & Number Theory RgNpeBg_ V 2014081677-81fWsSome sharp maximal function inequalities and boundedness for commutator of Riesz transforms of Schrodinger operator !S[\ ĞR R\U[7th International Conference on Function Spaces and Operators Theory ,{NJ\QpezzT{P[tVEO sYr)19-31!S[\Mk-type sharp estimates and boundedness on Morrey space for Toeplitz type operators associated to fractional integral and singular integral operator with general kernel sO ĞR R\U78-91sOxToeplitz type operator related to singular integral operator satisfying generalized Hormander's conditions of Young type km ĞR R\U129-142km~Weighted boundedness for Toeplitz type operator associated to singular integral operator with variable Calderon-Zygmund Kernel fpg ĞR R\U143-157fpgWMean oscillation and boundedness of multilinear operator related to multiplier operator hTGY\ ĞR R\U185-202hTGY\Weighted boundedness for Toeplitz type operator associated to singular integral operator satisfying a variant of Hormander's conditionhTlhTl R\U1-13LWeighted boundedness of Toeplitz type operator on Lebesgue and Morrey spaces'Y^ R\U51-67Necessary and sufficient conditions for requalities between the generalized Muirhead Mean and arithmetric,Harmonic and geometric meanssfh u~ [Ώ%f sf7Pacific Journal of Applied Mathematics ^(upef[*Ys^ mBg_ KQW0WN 2014090117-2979Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderon-Zygmund kernel ĞR ܀ R\U3Journal of Mathematical Inequalities pef[ NI{_Bg_ KQW0WN 8453-464܀Chaotic Oscillations of the Klein-Gordon Equation with Distributed Energy Pumping and van der Pol Boundary Regulation and Distributed Time-varying CoefficientsY[l,Ğ:ce:Electronic Journal of Differential Equations _Re z5uP[Bg_ V 201409102881-28IOn pre-exit joint occupation times for spectrally negative Lvy processesNg^Bl hTSfe-Statistics & Probability Letters ~Nis wpQ 201411019448-55hFixed point theorems in piecewise continuous f< unction spaces and applications to some nonlinear problemsRINڋ 4TT<Mathematical Methods in the Applied Sciences ^(uyf[-Nvpef[el V 2014031537508-5177Branching random walks with random environments in timeRhQGS Ğ%f heR RhQGS835-842WAnti-periodic boundary value problems of second-order functional differential equationsRۏl uY Rۏl e=NvfKBulletin of the Malaysian Mathematical Sciences SocietylegNpef[yf[f[Ob, legN 311-320cIncremental Approaches to Computing Approximations of Sets in Dynamic Covering Approximation Spacesΐ^ Tΐ^ T Ng^V !fpg eh/Lecture Notes in Computer Science {:gyf[IN V 20140507510-5216Pseudo-umbilical CR-submanifold of an Almost HermitianNR" NR5Acta Mathematica Universitatis Comenianae pef[f[b emOKQ 2014070983311-316QA proximal point-like method for symmetric finite element model updating problemsu^ u^ ^[s^ YVg1Computational and Applied Mathematics{N^(upef[ V 20140820ONonlinear Problems: Mathematical Modeling, Analyzing, and Computing for FinanceĞR eQNS Ng^s^ gSfN201406181-2WNP300v:gcSvpef[!jWN{lxvzgNY Y[lybReN^(uvQ[ Rir2014011553-55gNYbD`~yr_[hyNN>k,4Tb 449-469WNeW[yr_vechxGrbc YSxvz _=N?e#k _=N&q\O'Yf[f[b93-95 -N_[yN-N_Nw5QUO!h,hTQNS,s8lZ ĞyyHr 93-96WNYelQs^ Nؚ!h *O+Vu vxvzq\"~'Yf[f[b20141211150-151,Applied Mathematics and Computation ^(upef[T{217 2264t:gsX-NSc$N'`RgǏ zvis'`(hg)R hg)R Xo/cN Ng_YXo/cNhTSfeNg^Bl hTSfe 1gZ sςk(Frontiers of Mathematics in China pef[MRl201407151gZ0?Pseudo-umbilical CR-submanifold of An Almost Hermitian Manifold)Acta Mathematica Universitatis Comenianae311-314"7Integrability of Distributions on Two Kinds of ManifoldAMAPN20141110125-128[P[w5~_g Nw5e zAX=BvqQmh^N 3 _[O 0ue[3`Comments on: Convergence properties of an iterative for solving symmetric non-linear equations  lQh hTOQ(Springer Science+Business Media New York20140609lQhsQNToeplotzbHaukel~'`e z~NlvxvzRNNRSfs RNN2014031907-10RSfs^Incremental approaches to constructing approximations of sets based on characteristic matricesΐ^ T Ng^V !fpg hg0u ehKInternational Journal of Machine Learning and Cybernetics :ghVf[`NNc6RVEBg_ V 201411161-20]P[,uNS,m_gVf,Ng^Bl,NgNO49-54`Comments on: "Convergence properties of an iterative for solving symmetric non-linear equations"lQh,hTOQ(Springer Science Business Media New YorkmSRbQpevN~Qpeckĉ[Rfi_ ĞeWS^'Yf[f[b8422-25fi_sQN]yؚI{pef[Ye9eivNN`Ng^Bl,"#W'Yf[pef[20140215 b_YA+XY^Hw5v'`(8ntQ-N,hQÍ[ _ꖫg,\:_,uZW2014112522-23Sharp maximal function inequalities and boundedness for Toeplitz type operator associated to singular integral operator with non-smooth kernel20140407141 -N_[yT-N_Nw5QUO !h hTNNS s8lZ!hQAsymptotic properties of supercritical branching processes in random environmentsNg^Bl RhQGS ؚ_:_,jlT~g737-751sQNToeplitz+Hankel~'`e z~vNlRSfs,RNN7-11;Ruin Probabilities in the Mixed Claim Frequency Risk ModelsuSfuSf ĞR201405291-7MAn Algorithm to Select the Optimal Program Based on Rough and Fuzzy Soft SetsReQ Ng^V(The Scientific World Journal yf[NLuBg_ V 20140828aApplication of the alternating direction method for an inverse monic quadratic eigenvalue problemu^ YVg24432-41WN;N‰Bayeselv Nnx[ct{l[sNg ce3,NghQs,Nwm m,Ng ybD20140423196-197 4Ow5v$N*N'`(8ntQ-N,_ꖫg,\:_,uZW20-21sQNty{| zxvz'`Yef[!j_vr^c"} _=N,hTOQ-NV5uRYe2014061263-64:gsX-NScRgǏ zvmp~is Ng_Y Xou Nge20141215Ng_Y N4NLuQRgǏ zv6e[es Nge Ng_Y Xou55-60NgeWNVP[RglveS<[Rċ0O  NVnWSw:NO'k3ޘ 'k3ޘ Ngee hT$\sO Se~876-77SeRpe6ibcee zv^NeQ9?@}HBBCDsE-FmhGHH(eIIocc    oiQj2ة  dMbP?_*+%MHP LaserJet 10204 XXSDDMHP LaserJet 1020 -(d_4" dX??U} } 4} } } `#}  c^o  W@ @ @ @ @ @ @ @ @ @ @ G@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ V@ @ t@ 8                  ~ ?                ~ @ ! "   # $  %  &    '  ~ @ ) *   * +  ,  -  .  /  ~ @ 8 9   : ;  <  =    >  ~ @ } A  ( ~           ~ @          -      ~ @ 1 2   3 4  ,  5    6  ~  @ @ A   A B  < C  D ~ "@ E F  ( G H  I J K L ~ $@ f g   h i   j  k ~ &@    (      (  ~ (@ N O  ( P Q  R S  T ~ *@          e      ~ ,@ } A  ( ~ i          ~ .@        u        ~ 0@ U "   V W  X  Y    Z  ~ 1@ [ F  ( \ ]  ^  -    _  ~ 2@ a F   b c  d  -    /  ~ 3@ x "   y z  u  `    {  ~ 4@      ]    -      ~ 5@    (        (    ~ 6@  "              ~ 7@  F              ~ 8@                ~ 9@  s        K      ~ :@  c           -      ~ ;@        i  u        ~ <@ l m   n o  p  q    _  ~ =@ r s   s t  u  v    w  ~ >@            K    Dl0 @! @" @# @$ @% @& @' @( @) @* @+ @, @- @. @/ @0 @1 @2 @3 @4 @5 @6 @7 @8 @9 @: @; @< @= @> @? @~ ?@         -  / ~ !@@ ! !s ! ! !s ! ! ! ! - !  !  ! ~ "@@ " " " "( " " " " "  " ( "  " ~ #A@ # # # # # # # # # - #  #  # ~ $A@ $ $F $ $ $ $ $ $ $ K $  $  $ ~ %B@ % %F % % % % % % % K %  %  % ~ &B@ & &F & & & & & & & K &  &  & ~ 'C@ ' 'F ' ' ' ' ' ' ' K '  '  ' ~ (C@ ( (F ( ( ( ( ( ( ( K (  (  ( ~ )D@ ) ) ) ) ) ) ) ) ) K )  )  ) ~ *D@ * * * *( * * * * * ? *  *  * ~ +E@ + +F + + + + + + +  +  +  + ~ ,E@ , , , , , , , , , - ,  ,  , ~ -F@ - - - - - - - - -  - ( -  - ~ .F@ . .* . . . . . . .  . ( .  . ~ /G@ / / / / / / / /u /  /  /  / ~ 0G@ 0 0 0 00 0 0 0 0 0 ? 0  0  0 ~ 1H@ 1 1 1 1( 1 1 1 1 1  1  1  1 ~ 2H@ 2 2 2 2 2 2 2 2 2  2  2  2 ~ 3I@ 3 3 3 3 3 3 3 3 3  3  3  3 ~ 4I@ 4 4F 4 4( 4 4] 4 4 4 - 4  4  4 ~ 5J@ 5 5" 5 5 5 5 5 5 5 7 5  5  5 ~ 6J@ 6 6O 6 6 6 6 6 6 6  6  6  6 ~ 7K@ 7# 7 7( 7( 7$ 7% 7 7& 7 ( 7  7 ' 7 ~ 8K@ 8 8 8 8 8 8 8 8 8 | 8  8  8 ~ 9L@ 9 9 9 9 9 9 9 9 9  9  9  9 ~ :L@ : : :( :( : :  : :I : ! :  : " : ~ ;M@ ; ; ;( ;( ; ; ; ; ; 7 ;  ;  ; ~ <M@ <4 <  < <( <5 <  < < <  <  < 6 < ~ =N@ =( =) = = =* =+ = =, = & =  = - = ~ >N@ > >8 > > > > > > > M >  >  > ~ ?O@ ?7 ?8 ? ? ?9 ?: ? ? ?  ?  ? ; ? D@l@ @A @B @C @D @E @F @G @H @I @J @K @L @M @N @O @P @Q @R @S @T @U @V @W @X @Y @Z @[ @\ @] @^ @_ @~ @O@ @ @ @ @ @ @ @ @ @ e @  @  @ ~ AP@ A< AO A( A A= A A A A  A  A > A ~ B@P@ B BR B B( B B+ B Bz B & B 0 B  B ~ CP@ C CF C C0 C C C C C  C  C  C ~ DP@ D D D( D0 D DA D DB D | D  D  D ~ EQ@ E  E  E E E  E  E E E  E  E   E ~ F@Q@ F. F  F F F/ F0 F F1 F 2 F  F  F 3~ GQ@ G? G G G G@ GA G GB G | G  G C G ~ HQ@ HD H H H HE HF H HG H  H  H H H ~ IR@ II IJ I( I( IK IL I IM I N I M I O I P~ J@R@ J| J J J( J} J+ J Jz J & J 0 J ~ J ~ KR@ KQ KR K K KS KT K KU K & K ( K V K ~ LR@ L LF L L L Lt L L L  L  L " L ~ MS@ MW MX M M MY MZ M M[ M \ M ( M ] M ~ N@S@ N N N N N Nt N N N  N  N  N ~ OS@ O OR O O0 O OT O O O & O ? O  O ~ PS@ P Pi P P P P P P P ? P  P  P ~ QT@ Q^ Q Q Q Q Q_ Q Q[ Q ` Q ( Q a Q ~ R@T@ R R R R R R R R R ( R  R  R ~ ST@ S S S S S S S S S  S  S  S ~ TT@ T T T T T T T T T ? T  T  T ~ UU@ U U U U U U U U U 7 U  U  U ~ V@U@ V Vi V V V V V V V  V  V  V ~ WU@ W W W W W W W W W  W  W  W ~ XU@ X X X X X XA X X X | X  X q X ~ YV@ Yw Yx Y Y( Yy Y+ Y Yz Y & Y 0 Y { Y ~ Z@V@ Z Z Z Z Z Z Z Z Z  Z  Z  Z ~ [V@ [ [ [ [ [ [ [ [ [  [  [  [ ~ \V@ \ \ \ \ \ \ \ \ \  \  \  \ ~ ]W@ ] ] ] ] ] ]A ] ] ]  ]  ]  ] ~ ^@W@ ^ ^ ^ ^ ^ ^ ^ ^ ^  ^  ^  ^ ~ _W@ _ _ _ _ _ _ _ _< _  _  _  _ D@l` @a @b @c @d @e @f @g @h @i @j @k @l @m @n @~ `W@ ` `O ` ` ` ` ` ` `  `  ` > ` ~ aX@ a a a a a a a a< a  a  a  a ~ b@X@ br bi b b bs bt b bu b  b  b v b ~ cX@ c c c c c c c c c  c  c  c ~ dX@ db dc d d dd de d df d & d  d g d ~ eY@ e e e e e e e eu e  e  e  e ~ f@Y@ fh fi f f fj fe f fk f l f  f m f ~ gY@ gn g g g go gA g gp g | g  g q g ~ hY@ h h h h h h h h h  h  h  h ~ iZ@ i i i i i i i i  i  i ( i  i !~ j@Z@ j" j j j j# j j j  j  j ( j $ j %~ kZ@ k& k' k k k( k) k k  k 7 k  k * k ~ lZ@ l+ l l l l, l l l  l  l ( l - l ~ m[@ m. m m m m/ mA m m0 m | m ( m 1 m 2~ n@[@ n3 n4 n n n5 n n n  n  n ( n 6 n 7" >6@  7     dMbP?_*+%"?? U>@7     dMbP?_*+%"?? U>@7 Oh+'0@H\p  ΢û ΢ûMicrosoft Excel@z(@(E)՜.+,0 PXl t|  ΢й' Sheet1Sheet2Sheet3   !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVXYZ[\]^`abcdefRoot Entry FWorkbookQSummaryInformation(WDocumentSummaryInformation8_