报告承办单位: 数学与统计学院
报告内容:Inverse Source Problems for Wave Propagation
报告人姓名:李培军
报告人所在单位:美国普渡大学数学系
报告人职称/职务及学术头衔: 教授
报告时间: 2019年5月25日周六下午4:30-5:30
报告地点:云塘校区理科楼A-419
报告人简介:李培军,2005博士毕业于美国密西根州立大学,现任普渡大学数学系教授。主要从事科学计算、数值分析和偏微分方程反问题等的工作,特别是光学、电磁学和波动方程中正反散射问题的研究。先后承担和主持了5项美国国家自然科学基金项目,发表论文80余篇。曾获美国国家自然科学基金杰出奖项(NSF Career Award)及 2015 年度Calderon Prize。
报告摘要:The inverse source problems, as an important research subject in inverse scattering theory, have significant applications in diverse scientific and industrial areas such as antenna design and synthesis, medical imaging, and optical tomography. Although they have been extensively studied, some of the fundamental questions, such as uniqueness, stability, and uncertainty quantification, still remain to be answered. In this talk, our recent progress will be discussed on the inverse source problems for acoustic, elastic, and electromagnetic waves. I will present a new approach to solve the stochastic inverse source problems. The stability will be addressed for the deterministic counterparts of the inverse source problems. We show that the increasing stability can be achieved by using the Dirichlet boundary data at multiple frequencies.