导师队伍

张勇讲师
2019年09月02日 | 点击次数:次

数学与统计学院研究生导师信息

一、电子照片

二、基本情况

姓名:张勇

性别:男

学历学位:博士研究生

职称:讲师

职务:无

学术兼职:无

研究方向:数论

电子邮箱:zhangyongzju@163.com

三、专业教学及教学成果

主要承担《抽象代数》、《初等数论》、《线性代数》、《高等数学》课程教学;

四、研究方向及研究团队

主要从事数论科研工作;

五、科研成果

[1]Yong Zhangand Tianxin Cai, $n$-Tuples of positive integers with the same second elementary symmetric function value and the same product, Journal of Number Theory 132 (2012), 2065--2074.SCI 4区)

[2]Yong Zhangand Tianxin Cai, $n$-Tuples of positive integers with the same sum and the same product, Mathematics of Computation 82 (2013), 617--623.SCI 2区)

[3]Yong Zhangand Tianxin Cai, On the Diophantine equation $f(x)f(y)=f(z^2)$, Publicationes Mathematicae Debrecen 82 (2013), 31--41.SCI 4区)

[4]Yong Zhangand Tianxin Cai, A note on the Diophantine equation $f(x)f(y)=f(z^2)$, Periodica Mathematica Hungarica 70 (2015), 209--215.SCI 4区)

[5] Tianxin Cai, Deyi Chen andYong Zhang, Perfect numbers and Fibonacci primes (I), International Journal of Number Theory 11 (2015), 159--169.SCI 4区)

[6] Tianxin Cai, Deyi Chen andYong Zhang, A new generalization of Fermat's Last Theorem, Journal of Number Theory 149 (2015), 33--45.SCI 4区)

[7] Tianxin Cai,Yong Zhangand Zhongyan Shen, Figurate primes and Hilbert's 8th problem, Number theory, 65--74, Ser. Number Theory Appl., 11, World Sci. Publ., Hackensack, NJ, 2015.ISTP会议论文)

[8]Yong Zhangand Tianxin Cai, On products of consecutive arithmetic progressions, Journal of Number Theory 147 (2015), 287--299.SCI 4区)

[9]Yong Zhang, Some observations on the Diophantine equation $f(x)f(y)=f(z)^2$, Colloquium Mathematicum 142(2) (2016), 275--284.SCI 4区)

[10]Yong Zhang, Right triangle and parallelogram pairs with a common area and a common perimeter, Journal of Number Theory 164 (2016), 179--190.SCI 4区)

[11]Yong Zhangand Zhongyan Shen, On the Diophantine system $f(z)=f(x)f(y)=f(u)f(v)$, Periodica Mathematica Hungarica 75(2) (2017), 295--301.SCI 4区)

[12]Yong Zhangand Junyao Peng, Heron triangle and rhombus pairs with a common area and a common perimeter, Forum Geometricorum 17 (2017), 419--423.(非SCI

[13]Yong Zhang, Junyao Peng and Jiamian Wang, Integral triangles and trapezoids pairs with a common area and a common perimeter, Forum Geometricorum, 18 (2018), 371--380.(非SCI

[14]Yong Zhang, On the Diophantine equation $f(x)f(y)=f(z)^n$ involving Laurent polynomials, Colloquium Mathematicum 151(1) (2018), 111--122.SCI 4区)

[15] Lirui Jia,Yong Zhangand Tianxin Cai, Some New Congruences Concerning Binomial Coefficients, Advance in Mathematics (China), 47(4) (2018), 525--542. (国内核心期刊)

[16]Yong Zhang, On products of consecutive arithmetic progressions. II, Acta Mathematica Hungarica, 156(1) (2018), 240--254.SCI 4区)

[17]Yong Zhangand Arman Shamsi Zargar, On the Diophantine equations $z^2=f(x)^2 \pm f(y)^2$ involving quartic polynomials, Periodica Mathematica Hungarica, 79(1) (2019), 25--31.SCI 4区)

[18] Junyao Peng andYong Zhang, Heron triangles with figurate number sides, Acta Mathematica Hungarica, 157(2) (2019), 478--488.SCI 4区)

[19] Tianxin Cai, Liuquan Wang andYong Zhang, Perfect numbers and Fibonacci primes (II), Integers: Electronic Journal of Combinatorial Number Theory, 19 (2019), A21: 1--10.(非SCI

[20]Yong Zhangand Arman Shamsi Zargar, On the Diophantine equation $f(x)f(y)=f(z)^n$ involving Laurent polynomials, II, Colloquium Mathematicum, 158(1) (2019), 119--126.SCI 4区)

[21]Yong Zhangand Arman Shamsi Zargar, Integral triangles and cyclic quadrilateral pairs with a common area and a common perimeter, Forum Geometricorum, accepted (2019-2-8).(非SCI

[22]Yong Zhangand Deyi Chen, A Diophantine equation about harmonic mean, Periodica Mathematica Hungarica, 80(1) (2020), 138--144.SCI 4区)

[23]Yong Zhangand Arman Shamsi Zargar, On the Diophantine equations $z^2=f(x)^2\pmf(y)^2$ involving Laurent polynomials, Functiones et Approximatio, 62(2) (2020), 187--201.(非SCI

[24]Yong Zhangand Zhongyan Shen, Arithmetic properties of polynomials, Periodica Mathematica Hungarica, 81(1) (2020), 134--148.SCI 4区)

[25] Yangcheng Li andYong Zhang,$\theta$-triangle and$\omega$-parallelogram pairs with areas and perimeters in certain proportions, The Rocky Mountain Journal of Mathematics, 50 (2020), 1059--1071.SCI 4区)

[26]Yong Zhangand Arman Shamsi Zargar, Integral triangles and perpendicular quadrilateral pairs with a common area and a common perimeter, Functiones et Approximatio, Commentarii Mathematici, 63(2) (2020), 165--180.(非SCI

[27]Yong Zhangand Dan Gao, On certain Diophantine equations concerning the area of right triangles, Mathematica Slovaca, 71(1) (2021), 171--182.SCI 4区)

[28] Yangcheng Li andYong Zhang,Rational triangles pairs and cyclic quadrilaterals pairs with areas and perimeters in certain proportions, Functiones et Approximatio, Commentarii Mathematici, 65(1)(2021), 47--59.(非SCI

[29]Yong Zhang, On products of consecutive arithmetic progressions. III, Acta Mathematica Hungarica, 163(2) (2021), 407--428.SCI 4区)

[30]蔡天新,张勇,欧拉猜想及其变种,数学进展(中文), 50(3) (2021), 475--479.(国内核心期刊)

[31] Junyao Peng andYong Zhang, On certain Diophantine equations involving triangular numbers, Integers, 21 (2021), A49: 1--11.(非SCI

[32] Tianxin Cai andYong Zhang, A variety of Euler's sum of powers conjecture, Czechoslovak Mathematical Journal, accepted (2020-10-20), DOI:10.21136/CMJ.2021.0210-20.SCI 4区)

[33] Mei Jiang andYong Zhang, Heron triangles with polynomial value sides, Acta Mathematica Hungarica, accepted (2021-6-6), DOI:10.1007/s10474-021-01178-y.SCI 4区)

[34]Yong Zhangand Qiongzhi Tang, On the integer solutions of the Diophantine equations $z^2=f(x)^2\pm f(y)^2$, Periodica Mathematica Hungarica, accepted (2021-1-21).SCI 4区)

[35]Yong Zhang,Qiongzhi Tang and Yunan Zhang, On the Diophantine equations $z^2=f(x)^2\pmf(y)^2$ involving Laurent polynomials. II, Miskolc Mathematical Notes, accepted (2021-10-18).SCI 4区)

Baidu
map